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1 Licensing

This package is licensed under the Artistic License v2.0: it is therefore free
to use and redistribute, however, we, the copyright holders, wish to maintain
primary artistic control over any further development. Please be sure to cite us
if you use this package in work leading to publication.

1. Ribalet, F., Schruth, D., Armbrust, E.V. flowPhyto: enabling automated
analysis of microscopic algae from continuous flow cytometric data. 2011
Bioinformatics, doi: 10.1093/bioinformatics/btr003.

2 Installation

2.1 Unix/Linux/Mac

Building the flowPhyto package from source requires that you have a C com-
piler, and all of the prerequisites for the underlying flowCore package: namely
the GNU Scientific library (GSL), and the Basic Linear Algebra Subprograms
(BLAS). After these prerequisites are taken care of, the package is ready to
install via:

R CMD INSTALL flowPhyto_x.y.z.tar.gz

After a successful installation the package can be loaded in the normal way: by
starting R and invoking the library command like so:

> library(flowPhyto)

2.2 Windows

The flowPhyto package is compatible with the Windows version of R and the
same prerequisites apply. However, the pipeline function and the downstream
file-based functions which deploy the four analysis steps to a cluster are not
currently supported.
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3 Introduction

Flow cytometry is a widely used technique among biologists to study the
abundances of populations of microscopic algae living in aquatic environments.
A new generation of high-frequency flow cytometer, known as SeaFlow, collects
up to several hundred samples per day and can run continuously for several
weeks (see Ribalet et al., 2010 for more details). Automated computational
methods are needed to analyze the different phytoplankton populations present
in each sample. Here we describe the flowPhyto R package which performs
aggregate statistics on virtually unlimited collections of raw flow cytometry files
in a memory efficient, parallelized fashion.

4 The SeaFlow Respository

SeaFlow data are stored in a custom binary file (EVT file) created every 3
minutes and consist of eight 16-bit integer channels namely:

> CHANNEL.CLMNS

[1] "fsc_small" "fsc_perp" "fsc_big" "pe"

[5] "chl_small" "chl_big"

The SeaFlow repository is composed of julian day labeled directories, each con-
taining chronologically-ordered EVT files. The following code shows how to
read one of these files into memory:

> evt.file.path <- system.file("extdata","seaflow_cruise","2011_001", "2.evt",

+ package="flowPhyto")

> evt <- readSeaflow(evt.file.path)

5 Core Functions

5.1 OPP Filtration

Unlike a traditional flow cytometer, SeaFlow directly analyzes a raw stream
of seawater using two detectors that determine the position of a particle in the
focal region of the instrument optical system (Swalwell et al., 2009). The filter
function selects optimally positioned particles (OPP) in each EVT file that are
used to distinguish the different phytoplankton populations.

> opp <- filter(evt, notch=1.1)

5.2 Cluster Based Classification

Because the characteristics of each phytoplankton population vary according
to environmental conditions and instrument settings, a table of customizable
parameters (pop.def.tab) is used to define the pre-gating regions and statistical
priors of phytoplankton population clusters.
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> opp.path <- system.file("extdata","seaflow_cruise","2011_001", "2.evt.opp",

+ package="flowPhyto")

> pop.def.path <- system.file("extdata","seaflow_cruise","pop.def.tab",

+ package="flowPhyto")

> opp <- readSeaflow(opp.path)

> def <- readPopDef(pop.def.path)

> def

abrev title xmin ymin xmax ymax

beads beads Beads 10000 30000 65000 65000

synecho synecho Synechococcus 7000 7000 35000 35000

crypto crypto Cryptophyte-like 30000 30000 65000 65000

diatoms diatoms Pennates-like 20000 20000 65000 65000

ultra ultra Ultraplankton 25000 30000 40000 45000

nano nano Nanoplankton 40000 20000 65000 65000

pico pico Picoplankton 10000 15000 30000 35000

unknown unknown Unknown 40000 0 65000 20000

color xvar yvar u.co lim

beads black chl_small pe 0.05 15000

synecho tan2 pe chl_small 0.25 -10000

crypto tomato3 pe chl_small 0.75 -1000

diatoms gold fsc_small chl_big 0.75 -5000

ultra palegreen3 fsc_small chl_small 0.50 NA

nano darkcyan fsc_small chl_big 0.75 NA

pico lightseagreen fsc_small chl_small 0.75 NA

unknown grey fsc_small chl_big 0.75 NA

Above we can see the default population definition table with the two dimen-
tional pregating ranges and the parameters passed to the statistical clustering
methods of the flowClust package (Lo et al. 2009).

Below, the classify function uses these pre-defined parameters and inputs
one or more OPP files (3 by default) to classify individual phytoplankton cells
into different populations.

> pop <- classify(x=opp, pop.def= def, func=2 )

[1] "Clustering 8 populations defined in pop.def table..."

> table(pop$pop)

0 1 2 beads crypto nano synecho

219 3810 178 415 11 39 52

ultra unknown

209 67

The plotCytogram function outputs a series of customizable 2-D cytograms
to visualize the phytoplankton populations identified by the classify function.

> plotCytogram(pop, "fsc_small","chl_small", pop.def= def, add.legend=TRUE, cex=1)

>
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Figure 1: The above 2-D Cytogram depicts the phytoplankton population
present in the sample.
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5.3 Consensus and Census

classify outputs vector files (consensus.vct) that contain the population
identification of the cells. classify is run in single file increments to provide
multiple passes over a single cell and strengthen the clustering analysis. During
the census step, these multiple-pass vector files are collapsed into one consensus
vector, which represents the most likely population classification of the different
phytoplankton cells. In addition, census produces a one-row census tab file that
contains the number of cells per population for each file. The concatenation of
these census tab files is used to create a per-population resampling scheme that
calculates the number of OPP files necessary so a sufficient number of cells (500
by default) is present in the resampled population.

> vct.paths <- sapply(c(1,439,440), function(i)

+ system.file("extdata","seaflow_cruise","2011_001",

+ paste("1.evt.opp.",i,'-class.vct',sep=''),
+ package="flowPhyto"))

> mat <- do.call(cbind,lapply(vct.paths, read.delim))

> consen.df <- consensus(mtrx=mat)

> table(consen.df$pop)

beads nano pico synecho ultra x

52 25 31 74 174 4644

> aggregate(consen.df$support,list(consen.df$pop), mean)

Group.1 x

1 beads 2.923077

2 nano 2.960000

3 pico 2.774194

4 synecho 2.959459

5 ultra 2.977011

6 x 2.986865

Above is a table of cross tabulated sums per population of the generated con-
sensus vector and a corresponding table of the average ’support’ counts. The
support column in the output of consensus keeps track of the number of the
multiple-pass classification vectors that called an event as this population.

Compare the above population count cross tabulation with the output of
census below.

> census(v=pop$pop, pop.def=def)

beads synecho crypto diatoms ultra nano pico

415 52 11 0 209 39 0

unknown x

67 0
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5.4 Aggregate Statistics

The summarize function performs per-population aggregate statistics (cell
concentration and the mean and standard deviation of the different channels)
using the resampling scheme.

> filter.df <- readSeaflow(opp.path, add.yearday.file=TRUE)

> classed <- cbind.data.frame(filter.df, consen.df)

> names(opp.path) <- getFileNumber(opp.path)

> class.jn <- joinSDS(classed, opp.path)

> nrow.opp <- sapply(opp.path, function(p) readSeaflow( p , count.only=TRUE))

> nrow.evt <- sapply(opp.path, function(p) readSeaflow(sub('.opp','',p), count.only=TRUE))

> class.jn$opp <- rep(nrow.opp, times=nrow.opp)

> class.jn$evt <- rep(nrow.evt, times=nrow.opp)

> summarize(class.jn, opp.paths.str=opp.path)

day file pop

x 2011_001 2 x

ultra 2011_001 2 ultra

synecho 2011_001 2 synecho

beads 2011_001 2 beads

pico 2011_001 2 pico

nano 2011_001 2 nano

resamp

x /tmp/RtmpI4xKqK/Rinst7656256513c9/flowPhyto/extdata/seaflow_cruise/2011_001/2.evt.opp

ultra /tmp/RtmpI4xKqK/Rinst7656256513c9/flowPhyto/extdata/seaflow_cruise/2011_001/2.evt.opp

synecho /tmp/RtmpI4xKqK/Rinst7656256513c9/flowPhyto/extdata/seaflow_cruise/2011_001/2.evt.opp

beads /tmp/RtmpI4xKqK/Rinst7656256513c9/flowPhyto/extdata/seaflow_cruise/2011_001/2.evt.opp

pico /tmp/RtmpI4xKqK/Rinst7656256513c9/flowPhyto/extdata/seaflow_cruise/2011_001/2.evt.opp

nano /tmp/RtmpI4xKqK/Rinst7656256513c9/flowPhyto/extdata/seaflow_cruise/2011_001/2.evt.opp

time lat long flow

x 2009-11-09 00:11:24 48.02425 -122.6206 2473.903

ultra 2009-11-09 00:11:24 48.02425 -122.6206 2473.903

synecho 2009-11-09 00:11:24 48.02425 -122.6206 2473.903

beads 2009-11-09 00:11:24 48.02425 -122.6206 2473.903

pico 2009-11-09 00:11:24 48.02425 -122.6206 2473.903

nano 2009-11-09 00:11:24 48.02425 -122.6206 2473.903

bluk_red salinity temperature event_rate

x 20.538 NaN NaN 3171

ultra 20.538 NaN NaN 3171

synecho 20.538 NaN NaN 3171

beads 20.538 NaN NaN 3171

pico 20.538 NaN NaN 3171

nano 20.538 NaN NaN 3171

fluorescence evt opp n conc fsc_small

x 5.31 4975 5000 4644 0.6226 30064.1

ultra 5.31 4975 5000 174 0.0233 29088.8
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synecho 5.31 4975 5000 74 0.0099 29839.0

beads 5.31 4975 5000 52 0.0070 30441.9

pico 5.31 4975 5000 31 0.0042 32203.9

nano 5.31 4975 5000 25 0.0034 29994.3

fsc_perp fsc_big pe chl_small chl_big

x 29077.6 0 4986.8 6570.8 4254.3

ultra 28021.6 0 3277.9 6069.3 4224.1

synecho 28962.3 0 2763.4 4327.7 2572.5

beads 29857.3 0 4688.8 8068.7 5332.3

pico 31374.5 0 2191.4 7863.6 5024.5

nano 28703.6 0 4505.8 7090.7 4947.2

fsc_small_sd fsc_perp_sd fsc_big_sd pe_sd

x 9007.5 9217.8 0 12190.2

ultra 8937.5 9093.0 0 9397.1

synecho 9141.5 9086.8 0 8462.3

beads 9867.3 9492.3 0 12000.4

pico 8736.3 8945.1 0 4741.4

nano 11245.0 10762.6 0 12565.3

chl_small_sd chl_big_sd

x 9495.7 6413.9

ultra 9673.5 6986.5

synecho 5564.9 4582.5

beads 11935.4 8221.6

pico 12587.0 8796.2

nano 10168.3 6885.9

The summarize function associates the corresponding acquisition time and
location (latitude and longitude). It outputs a summary table of the entire set
of SeaFlow data.

The plotStatMap creates customizable plots of the geo-referenced data cre-
ated by summarize. A combination of the different parameters per population
or a single parameter over different populations can be selected depending on
the purpose of the analysis.

> stat.tab <- system.file("extdata","seaflow_cruise","stats.tab",

+ package="flowPhyto")

> stats <- read.delim(stat.tab)

> plotStatMap(df=stats, pop='ultra', z.param='conc', margin=0.2, zlab=expression(paste('Cell concentration, ',10^6 * cells/L)),

+ main="Cell concentration of Ultra-plankton population")

> mtext(line=1, side=4, "cell concentration 10^6 cells / L")

>
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Figure 2: Ultra-plankton concentration for the Puget Sound in November, 2009
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6 File-Based Functions, Input Validation, and
The Pipeline

Each of the above core functions has a file based analog that takes one (or
several) paths as it’s main input parameter and outputs one or many files. For
examples of these please check the man pages for individual file functions.

6.1 Directory Initializtion

First you’ll need transfer the data to a location where there is plenty of extra
disk space (around 25 percent more space than the raw EVT files alone). Then
you’ll want to make sure the directory has write access for the user who will be
running the pipeline. Changing your working directory to the output directory
is also recommended as many of the cruise specific job files get written there
by default. Additional steps such as creating a log or plot sub directory in the
repository or a new record in your cruise database (if you plan on uploading the
resulting statistics or sds information to your database) may be desiarable as
well.

6.2 SDS and pop.def.tab validation

One of the more important pre-processing steps to make can be with val-
idating the SDS file before running the pipeline. One should both check for
evidence of parsing errors that may have crept into the ship’s data stream. The
following code demonstrates one way this could be done, namely, longitude and
latitude checking:

> path <- system.file("extdata","seaflow_cruise",package="flowPhyto")

> sds <- combineSdsFiles(path)

> plot(sds$LON, sds$LAT)

Additionally any externally defined population definition table should be vali-
dated using the following function.

> validatePopDef(readPopDef(pop.def.path))

[1] TRUE

An external pop.def can be specified by placing a file named ’pop.def.tab’ in
the cruise’s directory. The parameter names and data types should match those
found in the POP.DEF object. If such a file is not present, one will get created
automatically from the dataframe hard coded into Define.R.

6.3 Running the Pipeline

The pipeline itself is merely a cluster deployment function which executes,
in concerted batches, each of the file-based wrapper functions for the 4 main
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analysis steps. Many of the sub-function specific parameters can also be passed
through from this upper level function. The following example copies the very
small bundled example data set to the present working directory and runs the
pipeline for just step 4 which calculate statistics on a repository that has already
undergone analysis steps 1 through 3.

> repository.dir <- '.'
> output.path <- paste(repository.dir,'/','seaflow_cruise',sep='')
> seaflow.path <- system.file("extdata", 'seaflow_cruise', package="flowPhyto")

> file.copy(from=seaflow.path, to=repository.dir, recursive=TRUE)

[1] TRUE

> pipeline(repo= repository.dir, cruise.name='seaflow_cruise', steps=4, parallel=FALSE, submit.cmd='qsub -l walltime=00:20:00')
> unlink(output.path, recursive=TRUE)

The most important parameters to set when calling pipeline are ’repo’ which
should be set to the location of your repository, and ’parallel’ which tells the
function whether or not to run in serial or parallel. Currently parallel jobs
are simply submitted a via a cluster submission command such as ’qsub’ (for
Torque/SGE) or ’mosrun’ (for MOSIX) as specified by the ’submit.cmd’ op-
tion. For the purposes of this brief example ’parallel’ has been set to FALSE
but should almost always, where possible, be set to TRUE (the default) when
running the pipeline over realistically sized, day or more long data sets. Ad-
ditionally, the submit.cmd parameter was set to use qsub as a non-functional
example. (Normally parallel=FALSE and submit.cmd would not be used to-
gether). Future plans for parallization include replacement of the above ’R
CMD BATCH’ and ’submit.cmd’ based parallelization with a PVM/MPI based
snow package implimentation.

6.4 Cleanup

There are two useful functions that can help to clean up the aftermath of
all of the pipelined R CMD BATCH calls. The cleanupLogs function deletes
log files depending on their error status. The clearOutput removes any output
files from specified steps to clear the way for a re-run of the pipeline.

7 Example Dataset

The examples bundled with this dataset have been artifically reduced both
in size and in number to make the package as light weight as possible. For
a more realistic example you can visit our website http://seaflow.ocean.

washington.edu to download a copy of the day-long 2009 Puget Sound cruise.
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